

Single cell RNA sequencing of Modic type 1 change bone marrow cells reveals dendritic cells as central mediators of inflammatory processes

I. Heggli^{1,2}, D. Burri^{3,4}, J. Devan^{1,2}, N. Herger^{1,2}, T. Mengis^{1,2}, C.L. Laux⁵, N.A. Farshad-Amacker⁶, F. Wanivenhaus⁵, I. Unterfrauner⁵, F. Brunner², M. Zavolan^{3,4}, O.Distler^{1,2}, M. Farshad⁵, S. Dudli^{1,2} ¹Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, University Intersity of Zurich, University of Zurich, University Intersity Intersity of Zurich, University of Zurich, University Intersity Intersity Intersity Intersity of Zurich, University Intersity Inter Switzerland; ³Computational and Systems Biology, Biozentrum, University of Basel, Switzerland; ⁵Department of Radiology, Biozentrum, University of Surich, Switzerland; ⁶Department of Radiology, Biozentrum, University of Basel, Switzerland; ⁶Department of Radiology, Biozentrum, University of Surich, Switzerland; ⁶Department of Radiology, Biozentrum, University Basel, Switzerland; ⁶Department of Basel, Switzerland; ⁶Department of Basel, Switzerland; ⁶Department, Basel, Ba Balgrist University Hospital, University of Zurich, Switzerland

Background

What are Modic type 1 changes (MC1)?

- Vertebral bone marrow lesions visualized as signal intensity changes on T1weighted (T1w) and T2w magnetic resonance images
- Prevalent (16%) in chronic low back pain (cLBP) patients.

What we know about the MC1 pathobiology:

- Key hallmark: Bone marrow inflammation
- Few studies suggest a role of neutrophils, monocytes, T-and B-cell cells in inflammatory MC1 processes^{1,2,3}

Sample collection and single cell sequencing

From low back pain patients with MC1 undergoing lumbar spinal fusion:

• Per patient: One MC1 and one intra-patient control bone marrow biopsy (MC1: n=4; intrapatient controls: n=4) was collected

Creation of single cell suspension:

- Enzymatic digestion and flushing
- Depletion of CD45+CD66b+ neutrophils by cell sorting

Sequencing and bioinformatic preprocessing:

• 10'000 cells (10x Genomics) (**Figure 1**)

Bioinformatic analysis

- Read alignment, count matrix creation (Cell Ranger)
- dimensionality Quality control, reduction (principal component analysis) (*scater*)
- Highly variable genes (HVG) identification (*scran*)
- Clustering (*igraph* using Leiden algorithm)
- Data integration (*fastMNN*)
- Annotation (DISCO database, manually)

Patient demographics

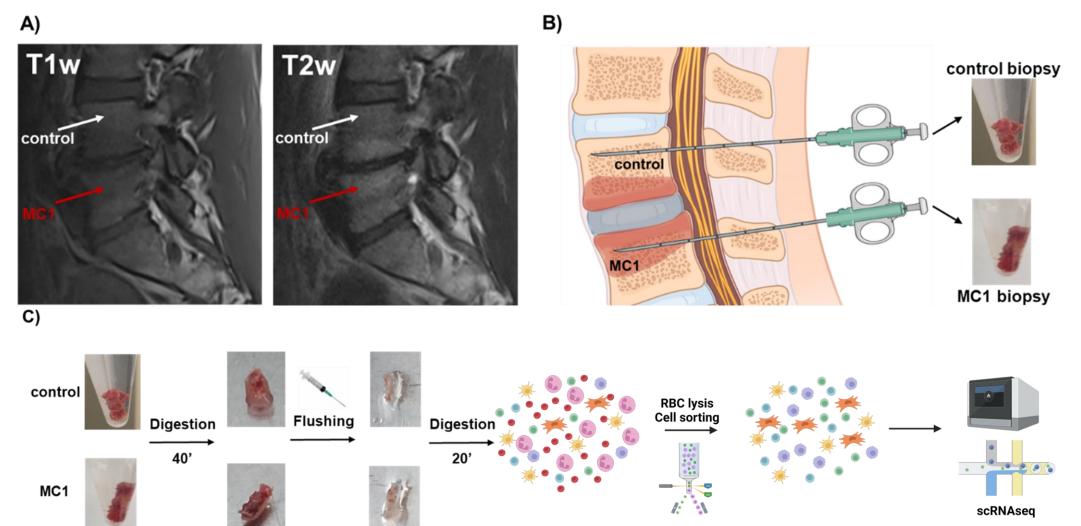
Table 1: Patient characteristics. VAS=Visual analogue scale; ODI: Oswestry disability index; DD: degree of disc degeneration (Pfirrmann grade); TES: Total and plata score

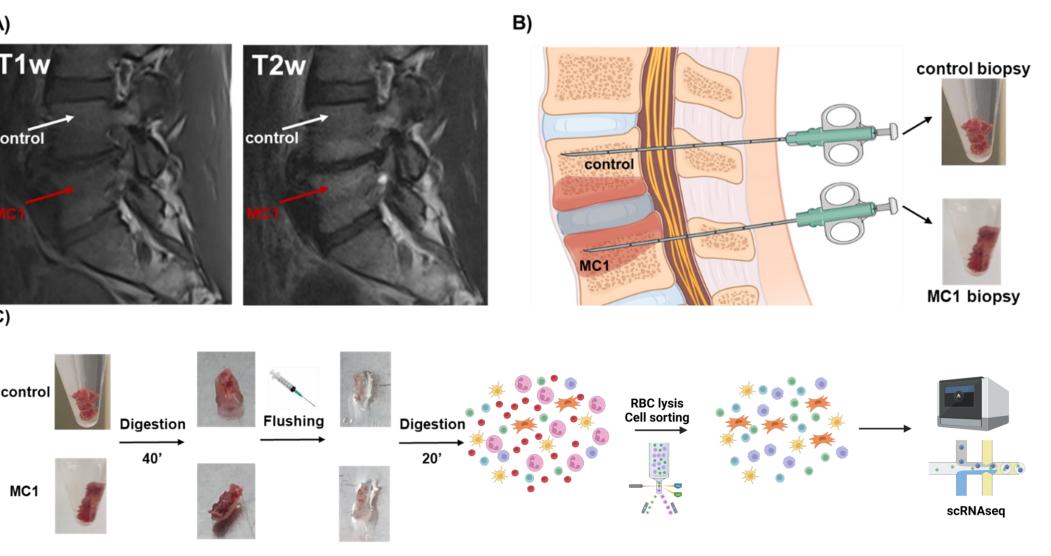
<u> </u>	<u>indplate s</u>	<u>core.</u>												
ID	Age	sex	Height [cm]	weight [kg]	BMI [kg/m ²]	smoker	VAS.back	VAS.leg	ODI	DD control	DD MC1	TES control	TES MC1	MC extent of vertebral body height
1	54	m	172	66	22.3	no	3	2	22	2	5	2	6	> 50 %
2	44	f	180	74	22.8	yes	8	9	50	2	4	2	6	> 50 %
3	61	f	164	103	38.3	no	7	7	53	3	5	3	6	> 50 %
4	68	f	152	44.7	19.3	no	5	5	43	3	5	3	6	> 50 %
mean \pm so	d 56.8 ± 10.2	,	167 ± 11.9	71.9 ± 24.1	25.7 ± 8.6		5.8 ± 2.2	5.8 ± 3	42 ± 14	2.5 ± 0.6	4.8 ± 0.5	2.5 ± 0.6	6 ± 0	
percentag	e	75 % f	•			25 % smoker								100 % > 50 %

Clustering reveals 74 clusters

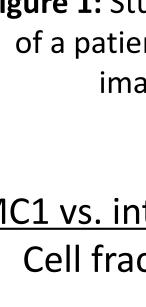
Cells retained after quality control:

• Total: 69'415 (MC1: 37'365; controls: 32'050)


74 main clusters (Figure 2A)


- \rightarrow Assignment to 18 main clusters (Figure 2B)
- 1. B-cell progenitors
- 2. B-cells
- 3. CD4 T-cells 4. CD8 T-cells
- 5. Conventional dendritic cells (cDCs) 14. Plasma B-cells
- 6. Double negative T-cells
- 7. Erythroblasts
- 8. Innate lymphoid cells (ILCs)
- 9. Macrophages
- 11.Monocytes 12. Myeloblasts 13.Natural killer cells (NKCs)

10.Mast cells


- 15.Plasmacytoid dendritic cells (pDCs)
- 16.Progenitors
- 17.Stromal cells
- 18.Contaminating neutrophils

Removal of contaminating neutrophils and erythroblasts from further analysis

- Differentially expressed (DEGs): p-value < 0.05.
- Hypergeometric overrepresentation analysis (ORA) of DEGs: AnaLysis Toolkit with terms WEB-based GEne SeT considered as significant for false discovery rate (FDR) < 0.2. Cell interactions: Cell chat

USZ Universitäts Spital Zürich **Center of Experimental Rheumatology**

What we do not have:

• a comprehensive understanding of the MC1 cellular composition

Relevance to identify key cellular players that drive inflammatory MC1 processes

- To provide grounds for future cell type specific pathomechanistic studies
- Laying the foundation for the development of disease-modifying MC1 treatments.

Figure 1: Study design and sample processing workflow. A) Representative MRI of a patient included in this study. B) Sample collection and representative image of collected biopsies. C) Workflow to isolate single cells

MC1 vs. intra-patient-controls:

- Cell fractions: Paired t-tests (*stats*)
- Pseudobulk differential expression analysis: *edgeR*, patient as secondary factor

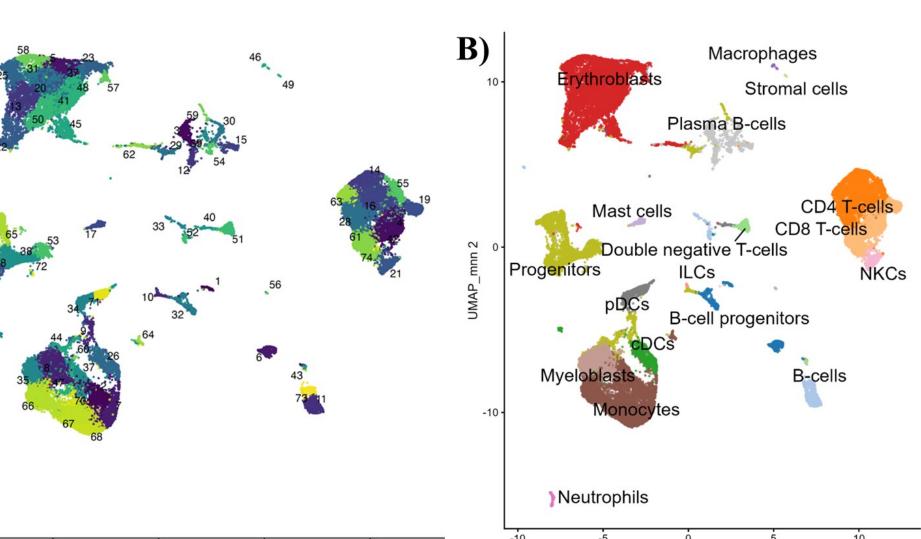


Figure 2: UMAP of Modic type 1 change (MC1) and intra-patient control bone marrow cells. A) 74 cell clusters. B) Clusters assigned to 18 main cell types.

Fractions of plasmacytoid dendrit dendritic cells (cDCs) were higher

Most transcriptomic changes occu

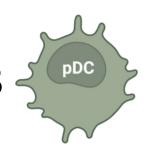
Plasma B-cells (1118 DEGs) and cDCs (913 DEGs) had the l

pDCs

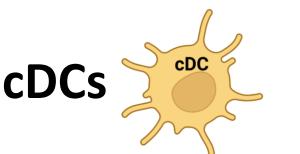
Dendritic cells in MC1 bone marr have a pro-inflammatory transcrip

Discussion **Dendritic cells in MC1:**

- activation
- MC1

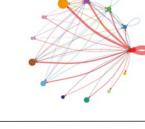

To resolve the MC1 bone marrow cell composition and to identify potential pathomechanistic relevant cell populations

Higher cell fraction in MC1: Plasmacytoid dendritic cells (pDCs)* • T-cells (CD4 and CD8 T-cells) Conventional dendritic cells (cDCs)


*consistently higher in MC1 among all patients

Lower cell fractions in MC1: • Double negative T-cells B-cell progenitors • Myeloblasts

ic c	ells (pD		T-ce	alle	and	conven	tional			
_							lionai			
	AC1 thar									
	2: Cell type fract				•	ontrol bone ma	arrow			
atter de	epletion of CD66	0+CD45	+ CEIIS K Control	у сен sc мсı	P-value	Fractional change	Direction			
Plasmacy	ytoid dendritic cells (pDCs)	3.06 ± 1.1	2.4 ± 0.73	3.73 ± 1.05	MC1 vs. control 0.12	MC1 relative to control 55.42				
	CD4 T-cells CD8 T-cells	$11.76 \pm 6.78 \\ 9.17 \pm 5.14$	9.97 ± 3.99 7.83 ± 4.03	$\begin{array}{c} 13.55 \pm 9.1 \\ 10.5 \pm 6.38 \end{array}$	0.29 0.24	35.91 34.10				
Concent	iona dendritic cells (cDCs) B-cells	$\begin{array}{c} 2.49 \pm 0.6 \\ 4.65 \pm 2.45 \end{array}$	$\begin{array}{c} 2.13 \pm 0.38 \\ 4.4 \pm 1.77 \end{array}$	$\begin{array}{c} 2.85\pm0.58\\ 4.9\pm3.28\end{array}$	0.20 0.58	33.80 11.36	4			
	Mast cells Stromal cells	$ \begin{array}{c} 1.23 \pm 0.4 \\ 0.21 \pm 0.1 \end{array} $	1.17 ± 0.58 0.2 ± 0.11	1.29 ± 0.15 0.22 ± 0.1	0.63 0.79	10.26 10.00				
	ILCs Plasma B-cells	0.11 ± 0.08 5.69 ± 1.69	0.11 ± 0.09 5.64 ± 1.37	0.12 ± 0.07 5.75 ± 2.19	0.83	9.09				
Natu	ural killer cells (NKCs) Monocytes	$ 1.59 \pm 0.77 \\ 16.8 \pm 5.13 $	$\frac{1.58 \pm 0.57}{17.51 \pm 5.52}$	1.6 ± 1.03	0.95	1.27 -8.17				
	Macrophages Progenitors	$\begin{array}{c} 10.8 \pm 5.15 \\ 0.33 \pm 0.42 \\ 11.85 \pm 4.8 \end{array}$	0.34 ± 0.49	$\begin{array}{c} 10.06 \pm 9.44 \\ 0.31 \pm 0.42 \\ 11.09 \pm 6.46 \end{array}$	0.60 0.50	-8.82 -12.05				
	Myeloblasts	5.72 ± 1.81	6.48 ± 1.83	4.96 ± 1.67	0.12	-23.46				
Do	B-cell progenitors uble negative T-cells	3.18 ± 3.08 1.88 ± 2.48	3.63 ± 4.27 2.35 ± 3.31	$\begin{array}{c} 2.72 \pm 1.82 \\ 1.41 \pm 1.68 \end{array}$	0.51 0.33	-25.07 -40.00	↓ ↓			
Со	ontaminating neutrophils Erythroblasts	$\begin{array}{c} 1.28 \pm 0.82 \\ 19.34 \pm 4.83 \end{array}$	1.43 ± 0.41 20.59 ± 2.52	1.13 ± 1.20 18.09 ± 6.63	NA NA	NA NA				
OW	of dendritic of make m ne sugge	ore	cel	lula						
	Transcriptomic changes MC1 vs. control									
	Adaptive immune response Immune response Interleukin-2 production T cell activation Response to purine-containing compound 0 2 4 6 8 10 -log ₁₀ FDR									
	Leukocyte differentiation Regulation of GTPase activity Regulation of cell-cell adhesion Leukocyte migration T cell activation 0 2 4 6 -log ₁₀ FDR									


Strongest (and only consistent) fractional increase in MC1

Further explorat

Cell interactions MC1 vs. control

+ 46 %

Attributed to interaction increase with other pDCs, CD4 T-cells, and cDCs

Attributed to interaction increase with other cDCs, CD4 T-cells, and pDCs

Potential regulators orchestrating inflammatory processes Both dendritic cell types seem to be involved in T-cell

Explanation for increased T-cell fractions

Potential initiation of an adaptive immune processes in

Potential activation mechanism of pDCs in MC1:

pDCs expand and become activated by neutrophil extracellular traps (NETs) (purine containing compounds)

 \rightarrow Neutrophils infiltrate and are activated in MC1^{1,2}

Dendritic cells expand in MC1 bone marrow and might be potential key players driving inflammatory processes

Dendritic cells might be potential treatment targets to alleviate inflammation in MC1

Balgrist

Objective

TAKE HOME MESSAGE

IMPLICATIONS