

Irina Heggli^{*1}, Mohamed Habib², Justin Scheer³, Nick Herger¹, Tamara Mengis¹, Borbala Aradi-Vegh¹, Christoph J. Laux⁴, José Miguel Spirig⁴, Florian Wanivenhaus⁴, Michael Betz⁴, Christopher P. Ames³, Mazda Farshad⁴, Oliver Distler¹, Aaron J. Fields², Stefan Dudli¹ ¹Center of Experimental Rheumatology, Balgrist Campus, University Hospital, University of Zurich, Switzerland; ²Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA, ³Department of Neurological Surgery, University of California San Francisco, CA, USA, ⁴Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland: irina.Heggli@usz.ch

Introduction

Modic changes (MC):

- Painful vertebral bone marrow lesions that occur around a degenerated intervertebral disc (IVD) and colocalize with endplate damage.
- Signs for neutrophil contribution in MC^{1,2}: Granulation tissue at bone-disc junction and dysregulated neutrophil maturation in MC bone marrow

In rheumatoid arthritis: Activated neutrophils mediate articular cartilage³ Little is known about the role of neutrophils in Modic changes and disc tissue damage

Aims

- **1.** To show that MC1 bone marrow neutrophils are activated
- 2. To discover the effects of activated blood neutrophils on cartilage endplate (CEP) composition

MC1 bone marrow derived neutrophil activation assessment

- Isolation of MC1 and intra-patient control Spinal fusion surgery bone marrow neutrophils from patients undergoing spinal fusion (n = 5+5)
- RNA isolation, sequencing, bioinformatic overrepresentation analysis (ORA) and gene set enrichment analysis (GSEA)
- Measurement of the neutrophil activation marker CD66b with flow cytometry (n =3+3) (Figure 1)

Neutrophil-mediated cartilage endplate (CEP) damage model

- Collection of 3 lumbar circular CEP biopsies per patient (patients n=6); CEP biopsies were halved and exposed to activated (100nM PMA, 3h) and non-activated neutrophil supernatant of one donor
- tissue released sulphated glycosaminoglycan (sGAG) and hydroxyproline (as CEP collagen release measure) were assayed using dimethylmethylene blue and chloramine-T assay (release from half-biopsy specific control was set to 100 %) (Figure 2)

Figure 2. Neutrophil-mediated cartilage endplate (CEP) damage model. ²Dudli et al., Eur Spine J, 2017 ³Carmona-Rivera et al., JCI Insight, 2020 **References**: ¹*Modic et al., Radiology, 1988*

USZ Universitäts Spital Zürich

Center of Experimental Rheumatology

Activated neutrophils degrade cartilage endplates

Figure 1. Bone marrow neutrophil collection and analysis.

control MC1

CD66b

Balgrist

Results

Figure 3. Transcriptomic analysis of MC1 and intra-patient control bone marrow neutrophils a) Gene ontology overrepresentation analysis: Top 5 upregulated biological processes in MC1 compared to intra-patient control bone marrow neutrophils. b) Gene set enrichment analysis: Enriched "inflammatory" gene set in MC1 bone marrow neutrophils. c) Representative flow cytometry image of CD66b expression in MC1 and control bone marrow neutrophils.

Exposure of CEP tissues to conditioned medium from activated neutrophils:

- Ο
- \bigcirc
- hydroxyproline release

Figure 4. Neutrophil-mediated CEP damage model. Relative sGAG released from CEP tissues exposed to positive control (white bars) or neutrophil supernatant from 25 mio/ml (blue) and 12.5 mio /ml blood neutrophils brown). sGAG release from half-biopsy specific *control was set to 100 %. *P < 0.01.*

Discussion & Conclusion

Implications

- activated phenotype

- Whether to be elucidated

2. Activated blood neutrophils degrade human CEPs

Significant increased sGAG release from CEP tissues in a dose-dependent manner (Figure 4) **25 mio/ml**: 380.1 % ± 177, p = 0.012; **12.5 mio/ml**: 123.7 % ± 22.3, p = 0.048 Relative sGAG release: **3.1-fold higher** in the CEPs exposed to supernatant from 25 mio/ml neutrophils compared to 12.5 mio/ml

neutrophils (25 vs. 12.5 mio/ml: p = 0.022) No significant effect of neutrophil supernatant on

> sGAG • •

25 mio /ml activated relative to non-activated neutrophils [%] **12.5 mio /ml** activated relative to non-activated neutrophils [%]

MC1 bone marrow neutrophils have an

Activated peripheral **blood neutrophils** degrade proteoglycans from CEPs

sGAG released from CEPs exposed to activated neutrophil supernatant for only 18 hours is **similar to** the amount of **sGAG** lost in vivo over 20 years of natural ageing

MC1 activated bone marrow neutrophils can degrade CEP tissue remains

Dudli Lab: www.dudli-lab.ch

